Postdoctoral Research Scientist at RWTH Aachen University, Ph.D. in Applied Mathematics and Computational Science, and Graduate Engineer. My research expertise is a mixture of mathematical (stochastic) modeling, numerical analysis, and the design and implementation of computational simulation methods.
Research Areas
- Quantitative Finance
- Computational Chemistry/Biology
- Optimal Control for Renewable Energy
- Uncertainty Quantification
- Machine Learning
Publications
Published:
-
Bayer, C., Hammouda, C.B., and Tempone, R. "Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing”. Quantitative Finance 23, no. 2 (2023): 209-227. https://doi.org/10.1080/14697688.2022.2135455
-
Hammouda, C.B., Rached, N.B., Wiechert, S., and Tempone, R. “Learning-based importance sampling via stochastic optimal control for stochastic reaction networks.” Statistics and Computing 33, no. 3 (2023): 58. https://doi.org/10.1007/s11222-023-10222-6
-
Bayer, C., Hammouda, C.B., and Tempone, R. “Hierarchical adaptive sparse grids and quasi-Monte Carlo for option pricing under the rough Bergomi model”. Quantitative Finance (2020): 20:9, 1457-1473. https://doi.org/10.1080/14697688.2020.1744700
-
Hammouda, C.B., Rached, N.B., and Tempone, R. “Importance sampling for a robust and efficient Multilevel Monte Carlo estimator for stochastic reaction networks”. Statistics and Computing (2020). https://doi.org/10.1007/s11222-020-09965-3
-
Hammouda, C.B., Moraes, A., and Tempone, R. “Multilevel hybrid split-step implicit tau-leap”, Numerical Algorithms (2017), 74(2):527-560. https://doi.org/10.1007/s11075-016-0158-z
Preprint:
-
Bayer, C., Hammouda, C.B., Papapantoleon, A., Samet, M., and Tempone, R (2022). “Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models”. ArXiv preprint arXiv:2203.08196. https://doi.org/10.48550/arXiv.2203.08196
-
Hammouda, C.B., Rached, N.B., Wiechert, S., and Tempone, R. (2021) “Automated Importance Sampling via Optimal Control for Stochastic Reaction Networks: A Markovian Projection-based Approach.” ArXiv preprint arXiv:2306.02660. https://doi.org/10.48550/arXiv.2306.0266
-
Bayer, C., Hammouda, C.B., and Tempone, R. (2021) "Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing”. ArXiv preprint arXiv:2111.01874. https://doi.org/10.48550/arXiv.2111.01874
-
Hammouda, C.B., Rached, N.B., Wiechert, S., and Tempone, R. (2021) “Optimal Importance Sampling via Stochastic Optimal Control for Stochastic Reaction Networks.” ArXiv preprint arXiv:2110.14335. https://doi.org/10.48550/arXiv.2110.14335
-
Bayer, C., Hammouda, C.B., and Tempone, R. (2020) "Numerical smoothing and hierarchical approximations for efficient option pricing and density estimation”. ArXiv preprint arXiv:2003.05708. https://doi.org/10.48550/arXiv.2003.05708
Google Scholar: Dr. Chiheb Ben Hammouda
Teaching
Co-Instructor of the following courses at RWTH Aachen University:
- Numerical Methods for Stochastic Differential Equations with Connections to Machine Learning.
- Stochastic Numerics with Applications in Simulation and Data Science.
- Numerical methods for Random Partial Differential Equations: Hierarchical Approximation and Machine Learning Approaches.