Person
Chiheb Ben Hammouda
Ph.D.Adresse
Gebäude: 1953
Raum: 160
Pontdriesch 14-16
52062 Aachen
_
Postdoc an der RWTH Aachen, Promotion in Angewandter Mathematik und Computational Science und Diplomingenieur. Meine Forschungsexpertise ist eine Mischung aus mathematischer (stochastischer) Modellierung, numerischer Analyse und dem Entwurf und der Implementierung von rechnergestützten Simulationsmethoden.
Forschungsgebiete
- Quantitative Finance
- Computational Chemistry/Biology
- Optimal Control for Renewable Energy
- Uncertainty Quantification
- Machine Learning
Publikationen
Veröffentlicht:
-
Bayer, C., Hammouda, C.B., and Tempone, R. "Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing”. Quantitative Finance 23, no. 2 (2023): 209-227. https://doi.org/10.1080/14697688.2022.2135455
-
Hammouda, C.B., Rached, N.B., Wiechert, S., and Tempone, R. “Learning-based importance sampling via stochastic optimal control for stochastic reaction networks.” Statistics and Computing 33, no. 3 (2023): 58. https://doi.org/10.1007/s11222-023-10222-6
-
Bayer, C., Hammouda, C.B., and Tempone, R. “Hierarchical adaptive sparse grids and quasi-Monte Carlo for option pricing under the rough Bergomi model”. Quantitative Finance (2020): 20:9, 1457-1473. https://doi.org/10.1080/14697688.2020.1744700
-
Hammouda, C.B., Rached, N.B., and Tempone, R. “Importance sampling for a robust and efficient Multilevel Monte Carlo estimator for stochastic reaction networks”. Statistics and Computing (2020). https://doi.org/10.1007/s11222-020-09965-3
-
Hammouda, C.B., Moraes, A., and Tempone, R. “Multilevel hybrid split-step implicit tau-leap”, Numerical Algorithms (2017), 74(2):527-560. https://doi.org/10.1007/s11075-016-0158-z
Vorabdruck:
-
Bayer, C., Hammouda, C.B., Papapantoleon, A., Samet, M., and Tempone, R (2022). “Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in Lévy Models”. ArXiv preprint arXiv:2203.08196. https://doi.org/10.48550/arXiv.2203.08196
-
Bayer, C., Hammouda, C.B., and Tempone, R. (2021) "Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing”. ArXiv preprint arXiv:2111.01874. https://doi.org/10.48550/arXiv.2111.01874
-
Hammouda, C.B., Rached, N.B., Wiechert, S., and Tempone, R. (2021) “Optimal Importance Sampling via Stochastic Optimal Control for Stochastic Reaction Networks.” ArXiv preprint arXiv:2110.14335. https://doi.org/10.48550/arXiv.2110.14335
-
Bayer, C., Hammouda, C.B., and Tempone, R. (2020) "Numerical smoothing and hierarchical approximations for efficient option pricing and density estimation”. ArXiv preprint arXiv:2003.05708. https://doi.org/10.48550/arXiv.2003.05708
Google Scholar: Dr. Chiheb Ben Hammouda
ResearchGate: Dr. Chiheb Ben Hammouda
LinkedIn: Dr. Chiheb Ben Hammouda
Lehrtätigkeit
Co-Dozentin der folgenden Lehrveranstaltungen an der RWTH Aachen University:
- Numerical Methods for Stochastic Differential Equations with Connections to Machine Learning.
- Stochastic Numerics with Applications in Simulation and Data Science.
- Numerical methods for Random Partial Differential Equations: Hierarchical Approximation and Machine Learning Approaches.